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Physics-Reconstructed Neural Networks,
a case study on evapotranspiration
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Abstract
In the field of nature sciences, due to inade-
quate grasp of existing mechanisms, unexplain-
able errors are always contained in simulations
from both Artificial Intelligence (AI) and physi-
cal process-based models. Since AI could quickly
get high-precision results, but could hardly illus-
trate parameters and answer scientific questions
as mechanism models, in recent years, it has be-
come a demand and trend to hybridize these two
methods to make compensation. Current hybrid
methods have made some progresses in improv-
ing accuracy, but it is still in an early stage when
it comes to improving other shortcomings, for
example, little interpretability of AI models, es-
pecially from the perspective of model structures.
In this paper, by combining spectral clustering
with small neural network blocks, a novel model
called Physics-Reconstructed Neural Networks
(PRNN) that can simulate complex mechanisms,
like evapotranspiration, was introduced for the
first time. PRNN was validated mainly in terms
of enhancing interpretability by reconstructing
the calculation of mechanisms, which could fur-
ther bring prospects and challenges in grasping
the known and unknown knowledge from another
perspective of AI in terms of nature science.

1. Introduction
Complex mechanisms are restricted with state-of-the-art
process-based models. Evapotranspirationan accounts for
around 60% of precipitation, making it an indispensable
part in water cycle, and an important role in surface energy
budget(Katul et al., 2012), which means accurate evalua-
tion of evapotranspiration is a key point in related research
in nature science. Via studying its physical process, many
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models have already been established to quantitatively de-
scribe evapotranspiration, such as Penman-Monteith Equa-
tion(Penman & Keen, 1948; Monteith, 1965; Sinclair, 2019),
surface energy balance models(Bastiaanssen et al., 1998)
and so forth, which were mostly built via empirically sim-
plifying unknown processes and carefully structuring equa-
tions for known processes. For example, Penman(Penman &
Keen, 1948) combined two theoretical approaches, aerody-
namic and energy basis, to describe evaporation, and tested
the equation on open water, bare soil and grass. Based on
that, Monteith(Monteith, 1965) added the process of evapo-
ration from leaves to fulfill the Penman-Monteith equation.
These equations or models have been demonstrated through
measurements, and became cornerstones for follow-up stud-
ies. However, they also contain certain insufficiency, like
some errors brought by simplification of unknown mechan-
ical processes and the necessity of being fixed in different
areas(Nian-xiu, 2011). More precisely, the accuracy of
estimating evapotranspiration by mechanism models is re-
stricted mainly by uncertainties of parameters and structures,
due to inadequate knowledge of mechanisms, which is one
of the reasons that Artificial Intelligence(AI) is so popular
in natural science.

Hybridization is of highly demand in developing AI and
mechanism models. The core concept of Artificial Intelli-
gence is to find the underlying relationship between input
and output data, with rare consideration on physical pro-
cesses, which has shown advantages on both accuracy and
efficiency, whereas performs worse than physical process-
based models in solving scientific problems, especially in
terms of interpretability. Those features between mecha-
nism models and AI are obviously contradictory and in
other words, complementary, making researchers highly de-
voted to coupling or hybridizing them to take advantages
over both of them. In previous studies, the mainstream
of coupling is to set AI and mechanism models in series,
mostly achieving in enhancing the final precision. And
gradually, demands of improving other shortages developed
more methods of deeper hybridization, which could be clas-
sified into two categories(Hu et al., 2023; Shen & Zhang,
2023). One is merging physical constraints into AI models,
to improve the performance of AI, by adding constraints
into input data(Yang et al., 2019), structures(Hoedt et al.,
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2021), and loss functions(Chen et al., 2022), to force AI
in accord with physical laws, with successfully enhanced
accuracy and slightly strengthened interpretability obtained.
The other is to use AI to promote the development of physi-
cal process-based models, such as taking place of empirical
parameters(Zhao et al., 2019), solving mathematical equa-
tions(Raissi et al., 2017), as well as being used for data
assimilation(Cintra et al., 2016). In conclusion, according
to studies on hybridization of AI and mechanism models,
it has been proved that AI has the ability to promote the
development of mechanisms, but it is still in an early stage
with the shortage of a little interpretability.

Physics-reconstructed neural networks. Recently, it was
noted that the capability of AI could also be enlarged to
construct mechanical processes, for example, SciNet, built
to discover simple physical concepts between distances and
angles while earth-moon system is moving in its orbit(Iten
et al., 2020), which just gave an inspiration of solving prob-
lems above. So, to construct more sophisticated physical re-
lationships, like evapotranspiration, a method, using cluster-
ing and neural networks, named Physics-Reconstructed Neu-
ral Networks (PRNN) was introduced in this paper. PRNN
consisted of two parts, clustering and fitting. Grouped by rel-
evance, highly correlated input variables were put into one
group, and input variables with a little correlation were di-
vided into different groups. Small blocks of neural networks
were then assigned to each group to output intermediate
variables collecting information of each group. By doing
so, each intermediate variable was generated with actual
meanings, like what was done in the calculation of physi-
cal process-based models, and was then passed to the final
block of neural networks to simulate the target variable.

Contributions. With a case study of evapotranspiration,
PRNN was demonstrated that it could make neural networks
more interpretable, with some parameters entitled actual
meanings, and is feasible in reconstructing mechanical pro-
cesses, with calculation similar to physical processed-based
models, which would to some extent benefit our understand-
ings of known and unknown physical processes in other
areas.

2. Data and methods
2.1. Data

Daily samples are provided by the FLUXNET 2015 Tier1
dataset(Pastorello et al., 2020), which was calculated on
average of original data sampled half an hour to avoid in-
terference from diurnal variations and weather conditions
that greatly affects evapotranspiration. Arrangements on
data were as follows. Firstly, since some variables, such
as: P(Precipitation), PPFD(Photosynthetic photon flux den-
sity), TS(Soil Temperature) and SWC(Soil water content)

lacked daily data on many stations, so although these data
also play important roles in evapotranspiration equation, it
would not be considered in this paper. Next, since latent
heat flux (LE) can reflect the actual evapotranspiration when
energy is mainly considered(Wang & Dickinson, 2012), LE
is thus used to describe the evapotranspiration process as
the output. Finally, 13 input variables, including VPD (Va-
por Pressure Deficit, hPa), PA (atmospheric pressure, °C),
WS (wind speed, m/s), USTAR (friction velocity, m/s), LW
(long-wave radiant energy, long radiation, W/m2),CO2 (CO2

mole fraction, mol/mol), SW (Short Radiation, W/m2), NE-
TRAD (Net Radiation, W/m2), TA (Air temperature, °C), G
(Soil heat flux, W/m2), H (sensible heat flux, W/m2), RECO
(Ecosystem respiration in daytime, gC/(m2.d)), NEE (Net
ecosystem exchange, gC/(m2.d))) were selected according
to three categories, measurement, energy and ecosystem
that were provided in the dataset.

Although there existed some variables not taken into ac-
count as mentioned above, the data collected have covered
variables from both aerodynamics and energy balance that
were recognized as the main processes of evapotranspira-
tion(Penman & Keen, 1948), which may not be comprehen-
sive, but already representative. In addition, we shuffled the
chronological order of data on each site and divided them
into a training set and a validation set in a ratio of 8:2. The
reason of no testset was that some sites left a small amount
of data after removing missing values, and the purpose of
this article is to prove the feasibility instead of giving an
optimal accuracy of the method, so no testset was prepared
here.

2.2. Spectral clustering

Since the evapotranspiration involves many physical factors,
in order to find the connection between each other, we first
calculated the Pearson correlation coefficient among them,
marked variables as point set V, and connected them with
weighted undirected edges (set E) to form an undirected
graph G(V,E). Therefore, to cluster these variables via
weighted edges, the spectral clustering algorithm evolved
from graph theory was chosen appropriately(Von Luxburg,
2007).

Wijwas defined as the weight between point Vi and Vj ,
which means for points connected with a weighted edge,
Wij > 0, whereas for points without edge connection,
Wij = 0. And thus formed the adjacency matrix Wn× n,
where Wij is the value of column j in row i. For diagonal
matrix D, the diagonal value, di, equals to the absolute
row sums of Wn× n. The equation is defined as Eq. (1),
where non-diagonal elements are 0. Laplacian matrix (L)
was the difference between diagonal matrix and adjacency

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Physics-Reconstructed Neural Networks, a case study on evapotranspiration

matrix(L = D −W ).

di =

n∑
j=1

Wij , (i = 1, 2, ..., n, j = 1, 2, ..., n) (1)

In general, Wn×n is unknown, which needs to be calcu-
lated via different methods like K nearest neighbor method,
Gaussian kernel function. But in this research, weights
were correlation coefficient between variables, and we de-
fined the weight to be 0, if its absolute value is less than
0.5. The core component of spectral clustering is to divide
the graph G(V,E) into k connected components, which is
also called k categories, by removing some edges. NCut
and RatioCut were widely used in cutting graph, with the
help of W , D, L. Considering RatioCut not only min-
imizing sums of weights among different categories, but
also maximizing sizes of each category to avoid the ex-
treme case that one category contains only one variable. So
RatioCut(Hagen & Kahng, 1992) was used to cut graphs,
and the equation was shown in Eq. (2). By introducing extra
vector h⃗, Eq. (2) equals to h⃗T

i Lh⃗i, which turns the target of
minimizing RatioCut into minimizing tr(HTLH), under
the circumstances of HTH = I . After getting the first
k1 corresponding eigenvectors by ascending eigenvalues
after the calculation of D− 1

2LD− 1
2 , normalizing them to

form the matrix Fn×k1
, and then classifying the matrix to

k2 categories, we could finally cut the original graph into
k2 components. And in this paper, to reduce the complexity
of k1and k2, they were entitled them with the same value.

RatioCut(V1, V2, ..., Vn) =
1

2

k∑
i=1

W (Vi, V̄i)

||Vi||
(2)

where for A ∈ V , A+Ā = V , ||Vi|| is the number of points
in set Vi, and when set A ∈ V and B ∈ V , W (A,B) =∑

Vi∈A,Vj∈B Wij .

2.3. Physics-reconstructed neural networks

Since the model proposed aimed to simulate the operation
of mechanism models, to simulate the whole process, small
fully connected neural networks blocks were thus used as
the basic unit of computation, after spectral clustering. The
whole model contained two layers in sequence. Each block
in the first layer learned the features of variables from each
group, which made each intermediate output theoretically
learn features from its input data, thus named feature learn-
ing. Later on, all the outputs were collected to build con-
nections with the target via the last block, hence was named
feature collection. The structure was shown in Fig. 1

2.4. Model Evaluation

For evaluating accuracy of clustering, the confusion matrix
for multiple categories was used to show how many vari-

Figure 1. Comparison of processes between the proposed model
and a mechanism model

ables were assigned as our expectation (Tab. 1). The Accu-
racy was calculated as A1+B2+C3

T or A1+B2

T , where A1,B2

and C3 were the number of variables that were matched
as experiences, and T represented the total amount of all
variables, with a better clustering, if Accuracy is closer to
1.

Table 1. The confusion matrix for two and three groups

EMPIRICAL
PRACTICAL GROUPA GROUPB GROUPC

GROUPA A1 B1 C1

GROUPB A2 B2 C2

GROUPC A3 B3 C3

For evaluating accuracy of the whole model, statistical pa-
rameters, root mean square error (Eq. 3) and coefficients
of determination (Eq. 4) were set to indicate the perfor-
mance,where yi is the measurement at time i, yhati is the
simulation at time i, and ȳ is the average of measurements.
N is the number of all samples. . The closer R2 to 1, or the
smaller RMSE is, the better performance of the model is.
Equations are as follows:

RMSE =

√∑N
i=1(y

hat
i − yi)2

N
(3)

R2 = 1−
∑N

i=1(y
hat
i − yi)

2∑N
i=1(yi − ȳ)2

(4)

3. Results and Discussions
3.1. Performances on reconstructing mechanisms

While operating a mechanism model, advanced rules like
multiplication, division, and power, etc. always preferen-
tially participate in the calculation over the low-level rules
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like addition and subtraction. Since it is important to know
which variables would be firstly calculated together in mech-
anism models, it is equally essential to figure out which
variables would be in the same state in PRNN, because the
corresponding block of neural networks would thus repre-
sent a physical process like what was done in mechanism
models. So the result of spectral clustering determined the
quality of reconstructing mechanisms.

According to previous research, evapotranspiration was re-
lated to aerodynamics and energy balance(Penman & Keen,
1948), which would thus restrict the number of clustering
to be 2 or 3(3 for variables that might be related to both of
the two processes). But when the number was adjusted to 4,
results showed that it failed to make successful clustering
and remained two or three groups, adhering to what was
known and expected, which indicated that, spectral clus-
tering, this method was effective and reliable for grouping
input data. Based on that, results of clustering exhibited the
interpretability of PRNN. Firstly, taking AT Neu station as
an example, it got three groups, which entitled three interme-
diate outputs in the original black-box model with features
of PA, CO2 respectively, and features mainly related to en-
ergy. Although there existed some variables empirically
related to ecosystems or aerodynamics, like NEE and WS in
the third group, the result that many variables clustered in
one group that mainly related to energy also showed a con-
sistency with previous research that energy balance is quite
useful in estimating evaporation(Penman & Keen, 1948).

But it needed to be noticed that clustering result at AT Neu
station, the understanding from the perspective of AI, was
not identical to our recognition. For further evaluation of
differences between AI and human knowledge, empirical
groups were set based on our experiences. Similarities
were shown via Accuracy. At 42 stations, Tab. 5 showed
Accuracy ranged from 0.23 to 0.85, with an average of 0.57,
which suggested a varying difference on the understandings
of mechanisms of evapotranspiration between PRNN and
our knowledge.

Table 2. Empirical groups

NUMBER OF GROUPS. AERODYNAMICS ENERGY BOTH

3 VPD,PA LW,SW,NETRAD RECO,NEEWS,USTAR TA,G,H

2
VPD,PA LW,SW,RECO

WS,USTAR NETRAD,TA,G
RECO,NEE CO2 ,H,NEE

3.2. Performances on simulation

Apart from interpretability, the quality of reconstructing
mechanisms actually depends on the precision. Due to dif-
ferent conditions on each station, the size of groups would

Table 3. The relationship between layers and input variables for
each neural network

NUMBER OF VARIABLES [1,3) [3,6) [6,12)

TOTAL LAYERS 2 3 4

Table 4. Searching ranges of hyper-parameters

UNITS OF feature learning k1(k2) UNITS OF feature collection

2,6,10,14,18,22,26 2,3 1,2,4,8

vary in a wide range, which could result in overfitting, if the
structure of the model on each station was fixed. So, hyper-
parameters of each model on each station, like the layers of
each block of neural netorks should dynamically vary with
the size of each group(Tab. 3). And since we viewed feature
learning firstly doing calculation as advanced rules, and
feature collection calculating as low-level rules just as what
was done in mechanism models, we assumed that feature
learning did the main learning process, more complex than
what feature collection would do, so searching ranges of
units thus were different between the two processes (Tab.
4). To find a good combination all hyperparameters, we
introduced RandomizedSearchCV(Pedregosa et al., 2011;
Buitinck et al., 2013) to resample 30 times to give an appro-
priate solution.

Also taking station AT Neu as an example, the perfor-
mance in validation set was depicted in Fig. 2. It could be
seen that the fitting line is really close to the real line, which
showed the good performance of the proposed model. Fur-
ther, Among 42 sites, statistical evaluation was displayed in
Tab. 5. Compared with pure artificial neural networks(ANN)
and physics-constrained neural networks(Zhao et al., 2019),
under the circumstances of a huge difference, 1-2 orders of
magnitude smaller in samples’ size, R2 in this paper was
just slightly worse than ANN, but almost equal to that of
the method that used neural networks to take place of an
empirical parameter, with RMSE considerably dropping
by 72.82% at least. But it should be noticed that the high
precision gained at AT Neu station accompanying the low-
est similarity(0.23) between PRNN and human experience,
which indicated that a different understanding of mechanism
from AI could also make a precise simulation. Besides, the
varying precision on different stations also proved the feasi-
bility and robustness of the PRNN.

4. Uncertainties
Previous research of hybridization noticed shortcomings,
such as little interpretability, vulnerable generalization from
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Figure 2. The performance of proposed model on train set(up) and
validation set(down) at AT Neu station (The black dashed line
depicts the 1:1 line, and the red solid line depicts non-biased linear
regression line)

Table 5. The statistical value of the evaluation indicators among
42 stations

STATISTICAL VALUE Accuracy RMSE(Wm−2) R2

MAXIMUM 0.85 34.67 0.97
MINIMUM 0.23 4.52 0.18
AVERAGE 0.57 13.98 0.77

Table 6. Comparison of results on validation set among different
research

MODEL R2 RMSE(Wm−2)

ANN 0.81 46.26
PHYSICS-CONSTRAINED NEURAL NETWORKS 0.78 51.45

PRNN 0.77 13.98

AI and uncertainties of structures and parameters from mech-
anism models. Although we entitled meanings to some
parameters in neural networks, breaking the black box, en-
hanced interpretability and validated feasibility in recon-
structing mechanisms through AI, there are more uncertain-
ties to be added. Firstly, the uncertainty of searching ranges,
restricted by our assumptions, there were some sites in
original data set with inappropriate model structures finally
obtained after searching, which could not learn physical pro-
cesses, resulting only less than 50% stations being effective.
Besides, The input data was manually selected and it would
be possible to get different clustering result with multiple
input data.

5. Conclusion
Taking evapotranspiration as an example, this paper proved
the feasibility of the proposed method, by comparing with
the measurement and previous research. With analyses on
clustering and proof on precision, we illustrated the possi-
bility on entitling physical meanings on some parameters
to improve interpretability and demonstrated even though
the understanding of physical relationships were different
from human knowledge, AI can still finish reconstructing
mechanical processes with a high precision and less data
demand through PRNN, which provided a new idea of hy-
bridizing Artificial Intelligence and mechanism models for
future work, which could be utilized in exploring the known
and even in pre-simulating of the unknown knowledge.
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