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Abstract15

Streamflow and water quality parameters (WQs) are commonly forecasted by16

mechanism models and statistics models. However, these models are challenged due17

to computational time costs, redundant parameters and several other uncertainties.18

Long short-term memory (LSTM) neural networks are a powerful deep learning19

method that provide the potential to minimize these deficiencies in a data-driven way,20
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especially when stacking is used. Therefore, a stacking LSTM model for enhanced21

capability was applied to simulate streamflow and eight WQs in the present study.22

Generally, two patterns, lags and sliding windows, can be applied to LSTM models,23

leading to different accuracies of simulation with various input architectures. The24

simulation effects of each pattern were first studied, and sliding windows was25

detected as the pattern with the higher and more stable accuracy for both streamflow26

and water quality forecast. Similarly, different input schemes resulted in different27

simulation accuracy. Predicting streamflow with only meteorological input failed to28

capture peaks and was accuracy-restricted for significantly increased window sizes29

(from 10 to 30), with Nash-Sutcliffe efficiency coefficient (NSE) around 0.6 in high-30

volume rivers and much lower accuracy (<0.1) in low-volume rivers. Adding31

historical streamflow into the input data set caused an increase to NSE ca. 0.9 in both32

mainstreams and tributaries. The value is only slightly below the NSE of a mechanism33

(Delft 3D) model, (ca. 0.99), implying that historical streamflow should be included34

into input data in further forecasts. Effects of the various input variables (i.e.,35

meteorological factors, streamflow, other influential WQs) as well as their respective36

combinations were individually studied in predicting WQs at each station with each37

LSTM model of specifically searched six hyperparameters (e.g., neurons of each layer,38

etc.). Our results document that WQs could be predicted by such alternative input39

schemes, with schemes including streamflow dominating the ideal schemes of above40

cases. A reliable performance level of relative error (RE) below 30% was achieved,41

despite of a weak capture of trends. Adding antecedent WQs into the input data42

caused a drop of the average value of the ideal RE of all stations by at least 48.80%.43

This method slightly impaired the accuracy compared to the results of Delft 3D model,44

but is still acceptable with RE reaching 17% at most, thus validating the modified45
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input schemes in WQs forecasts. Our study documents that the LSTM model with46

appropriate pattern and input data is an effective method for daily streamflow and47

water quality forecasts.48

Key words: Long short-term memory (LSTM), Streamflow forecast, Water quality49

forecast, pattern, input schemes50

1 Introduction51

Human lifestyles, industry development and vegetation growth largely depend on52

the availability of water. Two important features of water, the streamflow and the53

water quality, are of specific significance, especially in commonly densely-populated54

river areas. River discharge has changed dramatically over the last years in 24% of the55

world’s main rivers (Li et al., 2020). Also, human activities have strongly degraded56

the cleanliness of the water, and the water quality of rivers is adversely affected by57

harmful pollutants (Jaffar et al., 2022). Without reliable control and management58

systems, the increasing water pollution and the fluctuating river volume can59

unexpectedly endanger adjoining areas. Therefore, accurate and reliable prediction of60

streamflow and water quality are of fundamental significance to regional water61

security and provide guidelines for regional water management.62

Generally, mechanism models and statistical models are the two methods63

commonly used for prediction. To achieve reliable forecasts of the streamflow,64

numerous hydrological models have been developed and classified including65

empirical, conceptual, and process-based models (Cho and Kim, 2022; Dadson et al.,66

2019; Peng et al., 2022). Likewise, prediction models for the water quality were67

significantly improved in recent years from single factor, steady-state model to68

multiple factors and multiple dimensional models, with concomitant increase of69
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accuracy and complexity (Wang et al., 2011). Although the improved models are more70

effective and closer to the reality, exemplified by process-based models, some71

deficiencies still persist insolvable with the state-of-the-art knowledge and technology,72

such as computational time costs, redundant parameters and uncertainties of model73

structures (Alizadeh et al., 2021; Wan et al., 2022). Although statistical models,74

including the Regression Trees (Stidson et al., 2012), and the family of ARIMA75

(Auto-regressive integrated moving average) models (Valipour et al., 2013), have76

been reasonably utilized in the prediction of sequence data, such as streamflow and77

water quality parameters or indicators (WQs for short), their application is limited by78

the incapability of highly non-linear processes (Najah et al., 2013). Nevertheless,79

despite of these deficiencies, prediction of streamflow has been demonstrated with a80

high precision, due to the easily measured long-term data (Yaseen et al., 2016). In81

contrast, none of the mechanism models or statistical models for predicting WQs82

work as well as in predicting the streamflow. And it is especially prominent for some83

intricate parameters related to nitrogen and phosphorous, which encouraged further84

studies, focusing on alternative methods to address those remaining problems.85

Purely simulating relations between input and output data, Artificial Intelligence86

(AI) has thoroughly overturned the state of modeling and significantly improved87

computational efficiency, with minor prior knowledge required (Bai et al., 2021).88

Since its implementation into natural sciences, AI essentially improved the trade-off89

between time costs and precision in many disciplines, also in hydrology. Specifically,90

machine learning, as a part of AI, comprises several innovative methods to solve91

major problems. Among those methods, multiple linear regression and non-linear92

models, such as Support Vector Regression (SVR), Bayesian Neural Network (BNN),93
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and Gaussian Process (GP) have become popular in streamflow forecasts (Rasouli et94

al., 2012). Likewise, Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy95

Inference System (ANFIS) have become the most utilized methods for WQ simulation,96

with popular investigated WQs such as biochemical oxygen demand, chemical97

oxygen demand, and dissolved oxygen being modelled (Ighalo et al., 2021). Although98

machine learning is very effective, some drawbacks, including learning divergence,99

poor generalizing performance, local minimum and over-fitting problems must be100

considered (Ghimire et al., 2021). To address these problems in highly non-linear101

processes, deep learning, the subdomain of machine learning, is a more powerful tool102

(Barzegar et al., 2020). Specifically for sequence data, Recurrent Neural Networks103

(RNN) yields reliable results in the short-term period, whereas on the other hand, in104

the long run, the results are comparably weak, due to gradient exploding and105

vanishing (Chen et al., 2018). Based on these findings, a further improved model, the106

Long short-term Memory Neural Networks (LSTM) has been designed to deal with107

longer data by maintaining constant errors in gradient calculations. Compared to other108

machine learning models or other more simple versions of RNN, like Gated Recurrent109

Neural Networks (GRU), LSTM yields more reliable results in hydrology (Kratzert et110

al., 2018; Shen, 2018), and has been successfully applied in streamflow forecasts111

(Lees, 2022) and WQs simulations (Wang et al., 2017).112

In terms of streamflow, apart from the general prediction with antecedent values,113

machine learning models have further explored for its capabilities. However, it is114

widely acknowledged that machine learning fails in simulating streamflow in the115

absence of historical streamflow, and thus models such as SVR, ANN and Random116

Forest (RF) are improved by coupling with other methods, like flow separation117
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method as a function of precipitation, temperature and potential evapotranspiration118

(Tongal and Booij, 2018). LSTM was originally introduced to rainfall-runoff models119

to explore its potential in predicting a variety of catchments (Kratzert et al., 2018).120

Subsequently, it was gradually extended to be compared and combined with other121

mechanism models (Xiang et al., 2020), validating capabilities of reasonably122

capturing trends but more biases (Cho and Kim, 2022), and also applied to123

explorations of fixed time steps and lead times of sliding window approach in sample124

generation as well as effects of adding extra meteorological data (Hu et al., 2020).125

However, in an hourly prediction of short-term runoff, the optimal time step of LSTM126

was detected to be unnecessary for the gradually stable accuracy, as time steps127

increase (Gao et al., 2020). Concerning the input data, imbalanced mass conservation128

was recognized in LSTM in the relationship of precipitation and flow discharge in the129

snow melting period (Yokoo et al., 2022), indicating its incapability besides energy130

conservation (Jia et al., 2019). Thus, concerning streamflow, samples are mainly131

generated on short-term runoff data in hours, with rare consideration on other units,132

like days. Correspondingly, the capability of LSTM with only meteorological factors133

(temperature plus precipitation) as input, and the difference between main streams and134

tributaries, have not been systematically studied in different situations so far.135

Likewise, concerning WQs forecast, machine learning models, represented by136

ANN, have been well utilized in predicting certain WQs with various input variables,137

not only considering influences of other WQs but also taking meteorological factors138

and streamflow into account (Najah Ahmed et al., 2019). LSTM has also been applied139

in simulating WQs, such as chlorophyll, total phosphorous and dissolved oxygen140

(Wang et al., 2017). In addition, it was used in comparison (Liang et al., 2020) and141



7

combination (Zhang et al., 2022) with complicated water quality models, for its142

capability in dealing with non-linear processes. However, comparative studies among143

different WQs (Li et al., 2023) and different input schemes are rare. In essence, the144

effects of each type of input variable and their combinations, as well as the historical145

WQs data have not been systematically studied, in clear contrast with the progresses146

with machine learning methods (Zhu et al., 2022) .147

LSTM is a well-developed model with various hyper-parameters to be tuned.148

Moreover, two patterns can be selected, in addition to specific strategies like Dropout149

(Srivastava et al., 2014) and Early Stopping (Prechelt, 1998) in case of overfitting, as150

well as stacking (Zhang et al., 2020) in the purpose of improving the simulation151

capabilities. The hyper-parameters, consisting of model structures, were subject of152

several studies (Wang et al., 2017). However, the patterns of different input153

architectures, i.e., lags and sliding windows of various time steps and lead times, were154

poorly studied, leading to the ignorance on reasonably choosing appropriate pattern155

and direct decisions on sliding windows in sample generation (Chen et al., 2022;156

Muzaffar and Afshari, 2019; Solgi et al., 2021). For a LSTM model that is to simulate157

two different and complex non-linear processes, i.e., streamflow and water quality, it158

is essential to appropriately select the running pattern for each process with variation159

of time steps and lead times. In terms of input data, effects of separate and160

compositional input factors pertaining to each mechanical process, also require161

systematic studies on the basis of suitable pattern.162

In our study, LSTM models are well devised by hyperparameters searched 30163

times with 5-folds cross-validation, to predict streamflow and water quality164

parameters with the two patterns and different input schemes in the middle reach of165
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the Yangtze River in China. The objectives of our research are twofold: (i) Choice of166

the appropriate pattern of LSTM in the prediction of streamflow and water quality. (ii)167

Based on the proper pattern, proving the feasibility of LSTM with different input168

schemes through a comparison with results of a mechanism model, Delft 3D model,169

so as to explore the plausibility in streamflow and water quality forecasts with170

alternative input schemes.171

2 Materials and data172

2.1 Study area173

The research watershed is situated in the Wuhan Metropolitan Area (110°38'N-174

115°60'N, 29°45'E-32°5'E) (Fig. 1), an urban cluster consisting of nine cities located175

in central China. The studied watershed constitutes the major water source for this176

region and is characterized by predominantly flat terrain surrounded by mountainous177

areas. The forest coverage within the watershed exceeds 25%. It encompasses the178

main channel of the Yangtze River and various tributaries such as the Han River and179

the Dongting Lake. The watershed extends from Luoshan town in Honghu city (Hubei180

Province) to Jiujiang city (Jiangxi Province), with a total water resource volume of181

410.73 M km3 (in 2021). Geographically, the watershed is situated in a transitional182

zone between the mid-latitude northwest wind belt and the low-latitude easterly wind183

belt, exhibiting typical characteristics of a subtropical humid monsoon climate. This184

climate is characterized by high temperatures with distinct seasonal variations and185

concurrent rainfall. The average annual temperature ranges from 16.3 to 16.8℃, with186

occasional extreme temperatures > 40℃ . Annual precipitation ranges from 1130 to187

1600mm, with the highest rainfall from April to October and lower rainfall from188

November to March. The mean annual streamflow recorded during the period from189
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2004 to 2019 was approximately 6084.79 m3 per day. Key indicators of water190

pollutant levels in the watershed include total phosphorus, ammonia nitrogen,191

chemical oxygen demand, and permanganate index. Industrial sources contribute 12%192

and 11% to the total emissions of ammonia nitrogen and total phosphorus, amounting193

to 2.86 M tons/year and 4.34 M tons/year, respectively. Meanwhile, domestic sources194

contribute 87% and 89% to these emissions individually (Chong et al., 2023).195

196

Fig. 1. Location and hydrology of the research area with the studied hydrological and water197

quality stations198

2.2 Data collection199

Samples of streamflow used in this study were collected at nine hydrological200

stations (Fig. 1) daily from 2004 to 2019, encompassing a total of 5,844 days. At four201

water quality monitoring stations within the research area, samples were collected for202
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a period ranging from November 1, 2018, to December 1, 2019, in a total of 396 days.203

The study included eight water quality parameters, namely pH, dissolved oxygen204

(DO), ammonia nitrogen (NH3-N), permanganate index (CODMn), turbidity (TU),205

electronic conductivity (EC), total nitrogen (TN), and total phosphorus (TP). In206

instances where data was missing, linear interpolation was employed. Fig. 1 depicts207

the position of the nine hydrological stations and four water quality stations, and Table208

1 comprises the corresponding matches. The raw data for each water quality209

parameter at the Yangsi Port station is presented in Fig. 2, and Fig. 3 displays the raw210

data for streamflow at the Hankou station, with the training and test sets outlined. Due211

to the limited amount of available water quality data, only the training and test sets212

were utilized in our study to assess the feasibility, roughly one year for training and213

one month for testing. The validation set will be incorporated in the model214

architecture for hyperparameter optimization.215

Table 1216

Gauging stations and their relation217

River Type Rive name Hydrological stations Water quality stations

Main stream The Yangtze River
Luoshan Yangsi Port
Jiujiang

Tributaries

Han River
Huangzhuang
Xiantao
Hankou Zongguan

Juzhang River Herong
Dongjing River Qianjiang
Ju River Liuzi Port Guoyu
Ba River Majiatan Bahezhen
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218

Fig. 2. Meteorological raw data (precipitation, P; water temperature, Tw) and water quality219

parameters at station Yangsi Port220

221

Fig. 3. Meteorological input data (precipitation, P; air temperature, Ta) and streamflow of222

station Hankou.223

2.3 Data pre-processing224

To eliminate units’ affection on the learning ability of models, the input data is225

standardized by the z-score method and is scaled according to the mean and variance226
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of the training sets. The formula is shown in Eq. (1):227

ij j
ijnew

j

x x
x

S


 (1)228

where, jx is the mean value of the j column of input data and jS is the standard229

deviation of the j column of input data.230

3 Methods231

3.1 LSTM and its two patterns232

Sequence data possess distinct characteristics. The knowledge it encompasses at a233

specific moment can be significantly influenced by adjacent information or strongly234

depend on information received a considerable time earlier. Consequently,235

conventional backpropagation neural networks exhibit limited learning capabilities in236

handling such data. To address this limitation, Recurrent Neural Networks (RNN)237

have been developed. It is structured as interconnected units, wherein each unit not238

only receives input data at the present time step but also obtains output data from the239

preceding unit in the sequence (Fig. 4).240

241

Fig. 4 Structures of RNN242

1tanh( [ , ] )T T T aa U X a b  (2)243

( )T T YY g Va b  (3)244
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Where X is sequence data divided by T times. a is the hidden output from245

previous moments, and �� ，�� are both biases. Through multiplication of weight246

matrices U, V and activation of nonlinear functions, tanh and g, the output Y at a247

certain time is obtained. Although the use of the tanh function can reduce the speed of248

gradient descent, which strengthens the ability to effectively learn information from249

longer time, RNN is still difficult to cope with the increasing amount of sequence data.250

This results in gradient vanishing or exploding, which, therefore, falls short of251

requirements of training longer data (Pascanu et al., 2013). However, by adding252

constant error carousel, LSTM can keep error streamflow linear, which could learn253

more than 1000 lag steps (Hochreiter and Schmidhuber, 1997), and by adding254

forgetting gates, it can adapt to changes in the longer run(Gers et al., 2000). The basic255

structure of LSTM is shown in Fig.5, with related equations 4 to 9.256

257

Fig. 5. basic unit of LSTM258

 1tanh( [ , ] )C T T CTC W X a b  (4)259

1( [ , ] )f f T T fW X a b    (5)260

1( [ , ] )u u T T uW X a b    (6)261

1( [ , ] )o o T T oW X a b    (7)262
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 1T u f TTC C C      (8)263

tanh( )T o Ta C   (9)264

TX is the input data of time series, X at T moment. 1Ta  is the hidden output of265

time T-1, while Cb , fb , ub , and ob are all biases, and CW , fW , uW , as well as oW are266

weight matrices of all time. Activated by logistic sigmodal function  , the four gates,267

TC , f , u and o , all react to TX and 1Ta 
. Forget gate f controls the extent of the268

information to be left out, and update gate u controls the extent of the information to269

be saved.  represents element-wise multiplication of matrices. TC is the final270

information defined by update gate and forget gate. Through output gate o , it would271

become hidden output 1Ta 
, passed to next 1T  time. Single LSTM layer could ensure272

that gradient descent proceeds without gradient disappearance or gradient explosion,273

but multiple stacked LSTM have been reported to be more efficient for learning274

potential patterns between data (Lipton et al., 2015).275

LSTM can be used to predict a single target or many target at each time step, and276

we only focus on one target calculated at one time step for better clarity in our study.277

Two patterns, sliding windows and lags are often separately applied in time series278

forecasts. The former utilizes the combined past k time-steps (Xt0-Xtk) data, also279

termed as window size, as input data to predict the next m lead-times target (Chen et280

al., 2022). In contrast, the latter sets lags to construct one-to-one relationship between281

input from the previous k lag and target output at the next time step (Muzaffar and282

Afshari, 2019; Solgi et al., 2021). To compare the many-to-one architecture and one-283

to-one architecture (Camps-Valls et al., 2021), the lead times in sliding windows are284

not considered. Therefore, output only target at the next one-time step, rather than the285
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next few steps. Since both patterns yield reasonable results but are not compared286

before research, a preference should be made prior to the experiments.287

3.2 Improved model framework288

Based on the progress of deep learning, it was recognized that models with289

complex structures and many parameters tend to provide stronger learning capabilities290

(Collins et al., 2016). However, in case of limited available data is limited and the291

excessive number of parameters, overfitting becomes a considerable concern. Various292

effective techniques have been developed to address this problem. In our study, we293

selected two commonly used methods, dropout (Srivastava et al., 2014) and early294

stopping (Prechelt, 1998), to minimize the risk of overfitting. By adding a dropout295

layer with a given proportion, some neurons of the last layer become stochastically296

forced not to update their weights in the next layer, thus contributing to prevent over-297

reliance on specific features and promoting the development of more robust298

representations. Early stopping monitors the changes in error or other evaluation299

metrics between consecutive training epochs. In case of a drop of the difference below300

the predefined threshold for a certain number of epochs, the model is considered to301

have attained a stable state and training is stopped to prevent further overfitting.302

LSTM comprises multiple hyper-parameters to be adjusted for the ideal303

performance. Searching for grids to test every combination of all hyper-parameters304

within the ranges is demanding. We therefore use RandomizedSearchCV (Buitinck et305

al., 2013), an API in scikit-learn package from Python, to randomly detect the ideal306

combination of hyper-parameters in ranges, a method that has been reported to be307

more efficient than grid search (Bergstra and Bengio, 2012). To reduce the mean308

squared error (MSE) (Wallach and Goffinet, 1989) for each combination of309
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hyperparameters, we applied 30 times iteration and 5-folds cross validation,310

accounting for 10% in the training set, while searching and learning in iterations.311

After that, the input data would be trained 500 epochs with those selected312

hyperparameters. Those hyper-parameters contain neurons of layers (L), proportion of313

each dropout layer (D) and lags or size of sliding window (m). Searching ranges of314

each kind of hyper-parameters remain the same (Table 2).315

Table 2316

Ranges of hyper-parameters317

Layer D m
Ranges [8,12,16,20,24,28,32,36,40,44,48,52,56,60,64] [0.1,0.2,0.3,0.4] [2,3,4,5,6,7,8,9]

Streamflow and water quality parameters are both strongly affected by previous318

periods and are characterized by periodic changes. To learn more about the sequence319

data, the model structure is devised with stacked layers to decode more relations320

(Zhang et al., 2020), with two dropout layers sandwiched between three stacked321

LSTM layers and a fully connected layer in the tail to improve the learning ability322

(Fig. 6). Our code is programmed with Python, and calculated on the AMD EPYC™323

ROME 7H12 CPU with 128 cores, 2G RAM per core. Loss function is defined as324

Equation (10):325

1
( lg( ) (1 (1 lg( )))T hat hat

i i i ii
Loss y y y y


      (10)326

where iy is measured value at time i , and hat
iy is the prediction value at time i .327
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328

Fig. 6. Structure of the LSTM329

3.3 Model comparison and performance evaluation330

To test the performance of our LSTM model, we compared it with the Delft 3-331

Dimension (Delft 3D) model, a mechanism model used to simulate variations in332

hydrodynamic conditions and water quality (Roelvink and Van Banning, 1995). Based333

on river topography, boundary conditions of water level and etc., and roughness data,334

Delft 3D constructs a hydrodynamic module that generates essential information335

regarding flow and water levels within the simulation area, as well as at specified336

cross sections. Following the calibration of the hydrodynamic module, the water337

quality module can be constructed by selecting the appropriate process library,338

allowing the simulation of specific water quality indicators such as NH3-N, TN, and339

TP. Simulating hydrodynamic conditions and water quality using Delft 3D has been340

documented as an efficient and credible method in several studies (Bai et al., 2022).341

Therefore, it is settled as the appropriate benchmark to evaluate the performance of342
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LSTM without any improvement.343

We adopted Nash-Sutcliffe efficiency coefficient (NSE) and Relative error (RE)344

for the evaluation in our study. NSE is often utilized to evaluate hydrological models,345

ranging from  to 1, with a better accuracy close to 1. Contrarily, the increase of RE346

causes decrease of the performance. Related formulae are Eq (11&12):347

2
1

2
1

( )
1

( )

N hat
i ii

N
ii

y y
NSE

y y





 





(11)348

1 100%
N hat

i ii

i

y y
RE

y



 


(12)349

where iy and hat
iy is the observed and simulated data at time i respectively，with350

mean value of observation as y .351

3.4 Impacts of model complexity on model efficiency352

3.4.1 Two patterns353

The decision of the pattern used for predicting streamflow and water quality prior354

to the experiments is essential, since they are of different complexity. Therefore,355

comparisons were performed with lags and the length of sliding window unevenly356

increasing as 1, 2, 3 and 7, which was based on empirical values at first (schemes are357

shown in Table 3). The optimal value and prediction error of each scheme applied to358

each station would be recorded to decide the ideal pattern for simulating streamflow359

and WQs separately.360

Table 3361

Schemes of testing effects of lags and sliding window362

Input-output Lags / the length of sliding window
streamflow-streamflow(a) 1/2/3/7
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streamflow-streamflow(b)
water quality parameter -water quality parameter(a)
water quality parameter-water quality parameter(b)
Tips：a-lags，b-sliding window

3.4.2 Different input variables363

Based on the derived appropriate pattern, our experimental schemes for364

predicting streamflow and water quality factors consist of two parts. The first part365

focuses on streamflow and involves the testing of the performance of meteorological366

factors, specifically air temperature and precipitation, as the input data. We varied the367

window sizes to assess their impact on the predictions. The second part considers the368

separate and combined effects of three types of factors: meteorological factors,369

streamflow, and other influential water quality parameters. Meteorological factors,370

including water temperature and precipitation, have a significant impact on both371

streamflow and WQs (Hu et al., 2020; Choi et al., 2021). Streamflow itself also372

strongly influences the concentrations of WQs, and certain WQs can also affect each373

other (Yousefi et al., 2018).374

In order to obtain accurate measurements in the laboratory, in our study, it is375

crucial to avoid interference from other WQs. And in our study, we focused on three376

key parameters: CODMn, TN, and TP. We considered the effects of pH and DO on377

CODMn (Meng et al., 2015; Wang et al., 2022), pH on TP (Li et al., 2013), as well as378

turbidity and NH3-N on TN (Huang et al., 2017). These factors and their combinations379

were included in the input data to predict the intricacy of the three selected WQs. To380

evaluate the effects of these factors and their combinations, we generated nine381

different schemes (A2, A3 and B2-B8) as outlined in Table 4, apart from original382

benchmark (A1 and B1).383

Table 4384
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Experimental schemes385

Target Model Schemes Input data Output data

streamflow LSTM
A1 S S
A2 MF S
A3 MF, S S

WQs LSTM

B1 WQ WQ
B2 MF WQ
B3 S WQ
B4 Other WQs An affected WQ
B5 MF, S WQ
B6 MF, other WQs An affected WQ
B7 S, other WQs An affected WQ
B8 MF, S, other WQs An affected WQ

MF: meteorological factors, S: represents streamflow, WQ: water quality

4 Results and Analyses386

4.1 Fault-tolerance capability of LSTM387

Either lags or sliding windows become inaccurate as time effect occurs. Therefore,388

the choice of the appropriate pattern and the time steps for each prediction are crucial.389

The training set for streamflow data consists of daily data from 2004/1/1 to390

2016/12/31, while the test set covered daily data from 2017/1/1 to 2019/12/31 (Fig. 2).391

Regarding the WQs datasets, with limited data from 2018/11/1 to 2019/12/1, the392

training set included data from 2018/11/1 to 2019/11/1 to capture changes throughout393

the year. The remaining data was used as the test set to evaluate the learning ability of394

the model. Stochastic gradient decent (SGD) was chosen to minimize loss function395

with the Adam optimizer, which had a default learning rate of 0.001 (Loshchilov and396

Hutter, 2018) and epochs of 100. Early stopping was implemented if differences397

within 20 epochs was less than 0.0001. Initially, a fixed structure of LSTM was used398

for eight hydrological stations and four water quality stations. Neurons of three layers399

were set 64, 64, and 32 respectively, while dropout proportion is both set to be 0.5,400

with settings of LSTM summarized in Table 2 to prevent possible overfitting. The401
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goals were to determine the ideal values for lags and sliding windows that produce a402

minimum loss, and to choose the appropriate pattern, which thus required no efforts in403

searching hyperparameters. The ideal value of both patterns was 1 for simulating404

streamflow, with roughly the same high accuracy between lags and sliding windows405

in Luoshan and Hankou but weak accuracy at Liuzi Port and Majia Tan (Table 5a).406

Sliding windows yielded a better accuracy for most WQs (Table 5b). Considering the407

non-instantaneous changes in WQs in general, it is more reliable to incorporate more408

previous data. Consequently, the LSTM model with sliding windows (without lead409

time in this study) is thus selected as the ideal pattern for both streamflow and WQs.410

Table 5a411

Results of simulating streamflow with A1 scheme and two patterns in 8 stations412

Watershed Station name
Lags Sliding window
RE (%) NSE Ideal value RE (%) NSE Ideal value

The Yangtze River
Luoshan 3.302 0.977 1 2.462 0.986 1
Jiujiang 3.870 0.972 1 2.616 0.989 1

Han River
Hankou 3.376 0.976 1 3.551 0.979 1
Xiantao 9.455 0.878 1 10.420 0.953 1

Ju River Liuzi Port 23.179 0.71 1 30.319 0.800 1
Ba River Majia Tan 49.814 0.490 1 56.631 0.303 1
JuZhang River Herong 29.773 0.232 1 14.638 0.517 1
Dongjing River Qianjiang 26.024 0.833 1 21.871 0.936 1
Note: The ideal value of the pattern is 1413

Table 5b414

Results of simulating eight WQs with A1 scheme and two patterns in Yangsi Port415

Station WQs lags Sliding window
Ideal value RE (%) Ideal value RE(%)

Yangsi Port

pH 1 0.942 1 1.249
DO 1 2.367 1 2.464
NH3-N 1 14.851 3 24.392
CODMn 1 6.933 1 7.226
EC 3 0.502 1 0.452
TU 1 38.447 1 44.002
TN 1 18.789 4 19.750
TP 1 8.510 4 8.026
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4.2 Performances of experimental schemes416

4.2.1 Simulation of streamflow417

The same fixed structure of LSTM models was used, which had been tested418

previously. In accordance with schemes from A1 to A3, effects of input data in the419

Hankou, Luoshan and Jiujiang stations are illustrated in Fig.7 with the help of the420

ideal size of sliding windows. The predicted trends of different input schemes,421

calculated from LSTM, are compared with results using Delft 3D to evaluate the422

reliability of the LSTM model (Fig. 7). The accuracy of the streamflow simulated423

from the basic LSTM model (A1 scheme) is comparable to that of the Delft 3D model,424

with the NSE value approaching 0.99. However, the peaks of streamflow modeled425

with the A2 scheme are flattened. In addition to these high-volume stations, the low-426

volume stations Xiantao and Herong, monitored less than 20% and 1% respectively,427

of those three previous stations, were added in Table 6 to illustrate differences428

between high-volume and low-volume stations. Effects of A3 scheme are also429

exhibited in Table 6. The data show that implementation of meteorological factors430

into streamflow (S+MF) slightly reduces the original accuracy, but the NSE value431

remained 0.9 in most stations. On the contrary, replacing streamflow entirely with432

meteorological factors causes a significantly loss of accuracy. The simulation433

capabilities with the A2 scheme were limited, with NSE values around 0.6 for the434

three high-volume stations, and much worse values in Xiantao and Herong. Our435

results indicate that predicting streamflow with only meteorological factors is less436

accurate than with historical streamflow. Nevertheless, the addition of streamflow (A3437

scheme) could be considered in practice and in certain cases, which yields more438

reliable results.439
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440

Fig. 7 Comparison of predicted streamflow between LSTM (A1 scheme: red, A2 scheme:441

brown), Delft 3D (blue) and the observed data (true).442

Table 6443

Comparison among three schemes of simulating streamflow at five stations444

Watershed Stations
S – S (A1) MF – S (A2) S + MF – S (A3)
RE NSE RE NSE RE NSE
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The Yangtze River
Luoshan 2.46% 0.986 22.57% 0.576 5.26% 0.975
Jiujiang 2.61% 0.988 20.39% 0.585 2.92% 0.987

Han River
Hankou 3.55% 0.979 19.65% 0.611 2.65% 0.989
Xiantao 10.42% 0.952 44.60% 0.012 7.71% 0.951

Juzhang River Herong 14.63% 0.516 68.42% 0.084 23.37% 0.600

4.2.2 Simulation of water quality parameters445

Considering the different mechanical processes involved in various WQs,446

individual LSTM was established for each scheme and each WQ parameter at each447

station. Thus, this approach differs from the fixed LSTM model used for streamflow448

forecasting. Within the ranges specified in Table 2, hyperparameters for each LSTM449

model were randomly searched and resampled 30 times to detect the ideal450

combination with the minimum MSE. A five-fold cross-validation was performed,451

with the validation set comprising 10% of the training set. Table 7 presents the ideal452

combination of hyperparameters for one particular station, namely Yangsi Port in the453

Yangtze River. It is important to note that RandomizedSearchCV, the method used to454

detect the optimal parameters, may only randomly conduct combinations within455

repetitions. Therefore, for WQs with more complex processes, such as CODMn, TN,456

and TP, it is possible that the loss function could not converge stably within the457

limited search times. However, since the focus of our study is not to detect globally458

optimal values, but to explore the feasibility of alternative input data, the instability of459

some hyperparameters has no negative impact on the reliability of our findings.460

Table 7461

Ideal hyper-parameters of LSTM model for B1 scheme at Yangsi Port462

m Layer3 Layer2 Layer1 D2 D1
pH 6 24 8 12 0.2 0.3
DO 6 24 8 12 0.2 0.3
NH3-N 2 44 28 24 0.3 0.1
CODMn 6 24 8 12 0.2 0.3
TU 6 24 8 12 0.2 0.3
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EC 6 24 8 12 0.2 0.3
TN 2 24 36 28 0.3 0.1
TP 2 44 28 24 0.3 0.1

463

Figure. 8. Comparative performances between LSTM (B1 scheme) and Delft 3D model at464

three stations.465

Basic performances of LSTM, using the results of B1 scheme are compared with466

that of Delft 3D model for two stations, Zongguan and Bahezhen in Fig. 8. The figure467

illustrates more accurate results for LSTM in capturing trends for the three main468

pollutants CODMn, TN and TP in the Yangtze River, thus, defining the benchmark for469

the remaining schemes. Fig. 9 and Table. 8 summarize the performances of B1 scheme470

and the following conclusions are drawn for the basic simulation ability of LSTM: (i)471

NH3-N, TN, and TP are considered as complex WQs and their accurate prediction was472

challenging, even with the B1 scheme, which generally yielded the most precise473

predictions. (ii) Some easily measurable parameters, such as pH and DO, were474

accurately predicted at most stations. However, other parameters including NH3-N,475

TU and TP exhibited significant fluctuation between different stations in the476

prediction accuracy, according to standard deviation. These findings demonstrate the477

complexity and variability in predicting different WQs, and constitute a major478

benchmark for comparison with the following results from LSTM models,479
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accompanied by Delft 3D models.480

Table 8481

RE of all WQs implementing B1 scheme with ideal hyper-parameters at the studied stations482

Stations pH DO NH3-N CODMn TU E.C TN TP
Yangsi Port 0.91% 2.92% 16.87% 10.27% 42.22% 1.61% 9.47% 9.59%
Zongguan 0.41% 2.00% 10.73% 3.91% 7.44% 0.95% 4.35% 6.76%
Guoyu 0.72% 3.21% 21.74% 7.40% 35.97% 4.39% 3.24% 27.06%
Bahezhen 2.49% 3.73% 35.44% 5.47% 24.56% 1.84% 8.75% 10.51%
Standard deviation 0.009 0.007 0.105 0.027 0.152 0.015 0.031 0.091

483

Figure. 9 Boxplot of all studied WQs among stations484

Based on the defined benchmarks, all schemes (B2-B8) were tested with double485

selection, where the hyperparameters of each model were selected first, followed by486

the selection of the ideal scheme for each station. Table 9 summarizes the three main487

pollutants in the study area, with the ideal scheme and the minimum RE marked bold.488
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The results document that among all the ideal schemes, B3 (using only streamflow as489

input data) accounted for the largest proportion at 50%. Additionally, schemes that490

included streamflow (B3, B5, B7, B8) made up to 75% of the selected schemes,491

indicating the significant influence of streamflow in predicting WQs. Moreover, the492

data document that streamflow played a key role in forecasting CODMn, TN, and TP,493

with proportions > 50% for each WQs. Concerning the accuracy, errors in the494

predicted CODMn, TN and TP generally increase less than 10%, which is practical for495

usage. Fig. 10 compares results of LSTM and Delft 3D model for the Zongguan and496

Bahezhen stations. Despite of the LSTM model’s weaker ability in capturing trends, it497

provides acceptable precision, with median RE for the three WQs below 17%. The498

comparison indicates acceptable errors. Considering the costs of measurement and499

time consumption, our results confirm that historical WQ are not required anymore as500

input data in the LSTM model, and should be replaced by some influential factors501

with acceptable precision, albeit the captured trends tend to be flattened. In addition,502

the ideal scheme varies at each case due to the heterogeneities.503

Table 9504

Ideal schemes and prediction accuracies at four selected stations (minimum RE are marked505

bold for Zongguan and Bahezhen stations)506

Stations CODMn TN TP
Yangsi Port B3(26.73%) B2(24.42%) B3(11.41%)
Zongguan B3(11.53%) B3(12.44%) B6(13.75%)
Guoyu B3(22.47%) B3(9.69%) B4(17.60%)
Bahezhen B5(6.69%) B5(12.84%) B7(16.43%)
Average 16.85% 14.85% 14.79%
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507

Figure. 10 Comparison between the performance of LSTM (the ideal scheme, red) and508

Delft 3D (blue) for three WQs at the Zongguan and Bahezhen stations.509

5 Discussions510

5.1 Parameters controlling the simulation of streamflow511

Apart from results of streamflow (Table 6 & Fig. 7), we also detected that for512

meteorological factors as the only input data, despite of partly unsatisfying precision,513

the RE and NSE increase as window size rise from 1, 2, 3 to 7. Several mechanism514

models have constrained equations between meteorological factors and streamflow:515

For example, the Weather Research and Forecasting hydrological modeling system516

(WRF-Hydro model) was applied for a lake basin with NSE of 0.93, highly close to517

the observed streamflow (Cho and Kim, 2022). Such successful simulation just raised518

the question that whether the precision of deep learning model could be more reliable,519

for example, with NSE > 0.8, as more previous data be provided? We conducted520
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further studies, with the size of sliding windows empirically rising from 10, 20 to 30521

(Fig. 11). Results show no obvious increase of the accuracy with expanding window522

size. At stations of ample streamflow, like Jiujiang and Luoshan, and the station of523

minor volume, namely Xiantao, accuracies attained to the zenith at the size of 20, and524

decrease after that, while precisions of the other two stations show a valley-type525

variation. Thus, the positive effect of longer sliding windows is limited in improving526

the simulation of streamflow, consistent with findings of a previous research (Gao et527

al., 2020). However, since NSE and R2 were almost in the identical format of528

equations in simulation, a R2 around 0.6 was concluded to be effective in some cases529

(Bai et al., 2021; Moriasi et al., 2007; Yokoo et al., 2022), which is contrary to our530

study, due to differing accuracy requirements. In addition to such hyper-parameters,531

input data has a major impact on the performance of the proposed scheme at different532

stations. The LSTM tends towards underestimation and poor capability in case of low533

water volumes (Cho and Kim, 2022), which explains the weak performances at the534

Herong station situated at a tributary, compare to stations like Hankou and Luoshan535

located at the main stream of the Yangtze River. Although LSTM models with536

historical streamflow (A1&A3) performed as well as Delft 3D models, they are less537

reliable as mechanism models, when antecedent data could not be involved in.538

However, since deep learning models require no boundary conditions, and is a well-539

known and promising method, the LSTM is appropriate to further study the potential540

of streamflow forecast.541
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542

Figure. 11Accuracy of LSTM (A2 scheme) with rising size of sliding windows, from 10, 20 to543

30 in five typical water quality stations.544

5.2 Analyses on simulating water quality parameters545

We have simulated eight WQs with B1 scheme, and three WQs from B2 to B8546

schemes in the study area. The former showed reliable results in predicting pH, DO,547

CODMn, and E.C, with RE < 20%, but less reliable performances in NH3-N, TU and548

TP forecasts. The latter results of CODMn, TN and TP are partly consistent with549

previous studies that reported better predictions in CODMn and TP in the Haihe river550

basin in Northen China (Li et al., 2023). By comparing average RE at all stations551

among B2-B8 schemes, we further analyzed the average effects of different schemes552

among stations (Table 10). The data document a less accurate performance of the553

three WQs for schemes including streamflow, such as B5, B7, and B8, compared to B1554

schemes. However, the RE of 19.62%, 32.21% and 27.99% with B3 scheme are still555

acceptable, compared with the other two schemes (B2 and B4), thus corroborating556

streamflow as the most dominant factor among the three input factors, consistent with557

findings of the previous research (Patil et al., 2022). Adding historical data has a558

major impact: After recalculation of this new scheme, comparisons were made559

between the ideal scheme (bold data in Table 10) and the scheme containing historical560

WQ and all three factors. Results in Table 11 document that among these typical WQs,561
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holding historical data dramatically declines the RE value by 56.68%, 62.53%, and562

48.80% for the three WQs, and thus excels those selected scheme with the ideal563

performances. Compared with the Delft 3D model that requires many pre-requisites564

and generally causes larger errors than basic LSTM models (B1 scheme), altering565

input data with more accessible variables in LSTM is not only more cost-effective,566

but also produces acceptable results for practical usage.567

Apart from accuracy achievements, our results show some deficiencies.568

Performances of LSTM on NH3-N and EC with B1 scheme are weak (Table 8),569

compared with other WQs. The reason remains uncertain, despite those dynamic570

structures had been provided. In terms of hyperparameters, while constructing LSTM571

models, the optimal time step of the appropriate pattern is different in various cases.572

Through comparison, window sliding is chosen in our study, and is taking different573

optimal time steps for each WQs at each station. However, the specific pattern and574

value of timesteps should be settled down according to each case in further study.575

Table 10576

Average RE of all scheme at all stations577

CODMn TN TP
B1 8.43% 9.28% 12.02%
B2 29.21% 45.74% 35.21%
B3 19.62% 32.21% 27.99%
B4 33.35% 35.57% 26.91%
B5 30.81% 36.58% 25.70%
B6 29.53% 31.21% 27.07%
B7 25.98% 32.40% 26.08%
B8 26.71% 34.71% 23.87%

Table 11 Comparisons between the minimum average RE of the ideal scheme (except B1) and578

the average RE of the scheme, containing all factors, at all stations579

CODMn TN TP
The ideal scheme 19.62% 32.21% 27.99%
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Histrocial WQs & all factors 8.50% 12.07% 14.33%

6 Conclusion580

We studied the capability of LSTM model with the appropriate pattern and input581

schemes for the prediction of streamflow and water quality in the middle reach of the582

Yangtze River, in China. The comparison with results from a mechanism model (Delft583

3D) allows to evaluate the efficacy and reliability of our models and to draw584

conclusions as follows.585

(1) Sliding windows is the more appropriate pattern than lags as the pattern of LSTM586

in simulating both streamflow and water quality parameters.587

(2) Only using meteorological factors as input data reduces the performance of588

forecasting streamflow, even with the longer sliding windows, with NSE of ca. 0.6589

in main stream and much worse values in tributaries of lower water volumes.590

Adding historical streamflow into input data slightly improves the performance,591

which could achieve similar accuracy as the Delft 3D models with NSE reaching592

0.9.593

(3) Only implementing meteorological factors, streamflow and other influential WQs594

as input data could achieve lower ability for capturing trends but acceptable595

precision of median RE below 17% in the prediction of CODMn, TN and TP.596

Streamflow is detected as the most dominant factor. Adding historical WQs into597

the input data increases accuracy by 48.8% at least among all proposed alternative598

schemes.599
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